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The generalized di!erential quadrature rule (GDQR) proposed recently by the authors is
applied here to solve initial-value di!erential equations of the 2nd to 4th order. Di!erential
quadrature expressions are derived based on the GDQR for these equations. The Hermite
interpolation functions are used as trial functions to obtain the explicit weighting coe$cients
for an easy and e$cient implementation of the GDQR. The numerical solutions for example
problems demonstrate that the GDQR has high e$ciency and accuracy. A detailed
discussion on the present method is presented by comparing with other existing methods.
The present method can be extended to other types of di!erential equation systems.

( 2000 Academic Press
1. INTRODUCTION

The di!erential quadrature method (DQM) was proposed by Bellman and his associates
[1}3] in the early 1970s as an e$cient numerical method to solve non-linear partial
di!erential equations. The DQM has since been applied to many areas in engineering and
sciences and is gradually emerging as a distinct numerical solution technique. When applied
to problems with globally smooth solutions, the ability to yield highly accurate
approximations with relatively few grid points has made the DQM the method of choice in
comparison to standard "nite di!erence and "nite element methods. Another particular
advantage lies in its ease of implementation. An additional advantage of the DQM is that
the di!erential quadrature analogs of di!erential equations with variable coe$cients can be
implemented directly.

Due to the above favorable features, the DQM has been applied extensively.
Developments of the DQM have led to the so-called generalized collocation method or
collocation-interpolation method [4, 5]. A review paper [5] provides both a survey of the
DQM's applications available in the literature and an updating of the state of the art on the
DQM. The cited literature [5] shows that the DQM could cope with a large number of
problems in the deterministic and even stochastic framework.

The conventional DQM [5] usually deals with di!erential equations of an order of no
more than two, which certainly involve only one condition at each discrete point. Many
problems encountered in the structural mechanics are governed by high-order di!erential
equations with more than one kind of boundary equation at each edge. For example, the
governing equation of a thin beam or plate #exure is a fourth-order di!erential equation
and is constrained by two boundary conditions at each boundary. The DQM has only the
function value as independent variable at any point, but two boundary conditions are to be
implemented at each edge. If the domain is discretized in the normal way, the number of the
0022-460X/00/220195#19 $35.00/0 ( 2000 Academic Press



196 T. Y. WU AND G. R. LIU
resulting di!erential quadrature analog equations will be more than the number of the
function values to be obtained, and the resulting equations cannot be solved. To apply the
double boundary conditions in fourth order systems, a d-point approximation approach of
the sampling points was "rst proposed by Jang et al. [6]. The d-points are chosen at a small
distance d:10~5 (in dimensionless value) adjacent to the boundary points. Then the
di!erential quadrature analogs of the two conditions at the boundary are written for the
boundary point and the adjacent d-point. The essence of the d-point technique is that some
specially chosen d-points adjacent to the boundary points are also treated approximately as
boundary points. Gutierrez and Laura [7] applied this d-point technique to a sixth-order
di!erential equation of a structural ring, which is constrained by three boundary conditions
at each boundary. The technique may be applied to the solution of the governing equations
with more conditions at one point by choosing more successive d-points.

Using the above d-point technique on multiple boundary condition problems, as
discussed in another review paper [8], Bert and his co-workers undertake the "rst extensive
application of the DQM to high order structural mechanics problems. The successful
application of the DQM to various structural problems such as beam, plate and shell
structures indicated that the d-point technique is one representative step in the development
of the DQM. Mansell et al. [9] used the orthogonal polynomials as test functions to
construct the weighting coe$cients of the DQM. Chang et al. [10] utilized di!erent
orthogonal functions as test functions and had the aid of the auxiliary functions to enhance
the solution accuracy. Domain decomposition and mapping techniques have also been
employed [11}16] in the DQM.

The necessity of using the d-point technique in multiple-boundary-condition problems
and an arbitrary choice of the d-value make the solutions ambiguous [8]. The solution may
oscillate in some instances or lose symmetry in symmetry problems. Another major
disadvantage of this d-point approximating technique is that it is di$cult to determine the
solution accuracy, because the d-points are actually not boundary points but are treated as
boundary points. To overcome this di$culty in the implementation of the boundary
conditions, several methods were discussed to free the DQM of using the d-point technique
[8, 17]. Malik and Bert [17] successfully built a certain type of boundary conditions into
the di!erential quadrature weighting coe$cients. But the boundary condition of a free edge
in plate problems cannot be implemented in the weighting coe$cient matrices and had still
to have recourse to the d-point technique.

Papers [18}20] tried to use the boundary points' rotation angles of beam and plate
structures as independent variables and established corresponding di!erential quadrature
expression for fourth-order boundary-value di!erential equations. In this way, two
boundary variables correspond to two boundary conditions at each edge. Therefore,
the number of the di!erential quadrature analog equations equals the number of the
independent variables, and the resulting equations can be solved to obtain all the
independent variables. The d-point technique and its corresponding shortcomings are
eliminated completely. As was pointed out [8], explicit weighting coe$cients are preferred
for the accuracy of the di!erential quadrature solutions. However, explicit weighting
coe$cients have not yet been derived [19, 20].

In earlier works except those of structural mechanics, the governing equations are usually
of an order of no more than two, which do not involve more than one boundary or initial
condition at each discrete point. The latest review paper [5] also con"ned its contents
within this case. The authors further point out that the DQM can be applied to any high
order di!erential equations without recourse to any special technique, such as the d-point
technique, if one needs to merely apply one equation at each discrete point. For example, if
one has an eighth order di!erential equation and eight given conditions at eight di!erent
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points, this problem can be solved using the DQM since this case does not involve more
than one condition at any point.

We also take an eighth order di!erential equation as an example. Now we may have all
eight conditions at one point, or four conditions at each of two points, or three conditions at
one point and "ve at the other, or three conditions at each of two points and two at the
other. From a mathematical viewpoint we may have even higher order di!erential
equations and more diverse known condition distribution. In structural mechanics, the
governing equation of a circular cylindrical roof can be expressed with an eighth order
di!erential equation with four boundary conditions at each end. For di!erential equations
involving more than one boundary or initial condition at one point, the DQM has no
generally e!ective technique to solve them without resort to the current d-point technique.

The generalized di!erential quadrature rule (GDQR) [21}25] was proposed recently by
the authors to solve the kind of di!erential equations which involve more than one
boundary or initial condition at one point. The problem of a sixth order di!erential
equation [7], which was tackled using two d-points at each end in the DQM, has been
solved [21] without any complications using the GDQR. The fourth order equations of
beam [22, 24] and plate [25] problems were also solved in the GDQR. For the
two-dimensional rectangular plates, the authors [25] obtained the frequencies of all the 21
classic boundary con"guration combinations, "ve cases of which were not successful in
"nding the frequencies using the DQM. The GDQR has also been applied successfully to
the shell problem [23].

The structural dynamics equations have two initial conditions, i.e., initial displacement
and initial velocity. Any high (*second) order initial value di!erential equations involve
more than one condition at the initial point. The structural dynamic problem and any
higher order initial value problems have never been tackled by the DQM. The main
objective of this work is, by using the GDQR, to present a general technique to solve high
(*second) order initial value di!erential equations. Detailed GDQR formulations for the
second to fourth order initial-value di!erential equations are presented. Explicit weighting
coe$cients are also derived for an easy and convenient implementation of the GDQR.
Numerical results are presented and discussed in comparison with analytic solutions.

2. FORMULATION

2.1. THE DIFFERENTIAL QUADRATURE METHOD

Suppose a function t(x) is governed by a di!erential equation in a domain. The function
values are desired at a "nite set of N discrete points x

i
(i"1, 2,2 ,N). Let t

i
"t (x

i
)

denote the function values. The DQM expresses the derivative at discrete points x
i
as

a linearly weighted sum of all function values,
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where A(r)
ij

are the DQM's weighting coe$cients associated with point x
i
.

The weighting coe$cients are determined using test functions. Many kinds of test
functions have been used, including the polynomials, the sine and cosine functions [26], the
Lagrange interpolated-based trigonometric polynomials [27, 28], sinc function [5], spline
function [29], and various orthogonal polynomials [9, 10] such as Jacobi, Laguerre,
Hermite and Chebyshev polynomials. The Lagrange interpolation function [30] is widely
employed since it has no limitation on the choice of the sampling points. Utilizing di!erent
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test functions, many terms have been coined; to cite only a few, they are harmonic
di!erential quadrature (HDQ) [26, 28], Fourier expansion-based di!erential quadrature
(FDQ) [27], generalized di!erential quadrature (GDQ) [30], and generalized di!erential
quadrature method (GDQM) [31]. Some terms are coined from the &&element'' concept:
quadrature element method (QEM) [16, 32], and di!erential quadrature element method
(DQEM) [18, 20, 33, 34].

No matter which test function one uses, it is preferable to obtain explicit weighting
coe$cients. Using the Lagrange interpolation function, Quan and Chang [35] and Shu and
Richards [30] obtained the following weighting coe$cients:
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The accuracy of the quadrature solutions is "rst dictated by the choice of sampling
points. Although there are many available choices for the sampling points, the issue of their
proper choice remains largely an unclear matter [8]. The equally spaced sampling points
have been used extensively in the literature. However, the non-uniform grids, especially the
sampling points at the zeros of orthogonal polynomials or functions, usually give more
accurate solutions than the equally spaced grids. The paper [36] discussed the optimal
selection of the sampling points still using the d-point technique. This new endeavour to
improve the d-point technique is, in fact, not needed in the GDQR. The so-called
Gauss}Lobatto}Chebyshev points, which are "rst used by Shu and Richards [30] and
whose advantage has been discussed by Bert and Malik [8], are well accepted in the DQM
as follows:

x
i
"

1!cos [(i!1)n/(N!1)]

2
(i"1, 2,2 ,N). (3)

Until the present time, the choice of test functions and the sampling points is still
a problem to be answered mathematically.

2.2. THE GENERALIZED DIFFERENTIAL QUADRATURE RULE

The DQM employs the function values at all the discrete points to establish the
di!erential quadrature method, i.e., to use only one independent variable (function value) at
each point. Therefore, the DQM can deal with only one condition at each discrete point.
The GDQR constructs the di!erential quadrature in a general situation, which can involve
more than one condition at any discrete point. The "eld function t(x) is governed by
a di!erential equation and constrained by a set of given conditions at any points. The
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solution domain is divided by points x
i
(i"1, 2,2 , N) that include all the points with

given conditions. If the function t(x) has to satisfy n
i
conditions (equations) at points x
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, the

GDQR expresses its di!erential quadrature rule at the discrete points x
i
as follows:
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As seen from equation (4), the GDQR imposes that the number of equations at point

x
i

equals the number of independent variables t(k)(x
i
) (k"0, 1, 2,2 , n

i
!1). The

independent variables are chosen to be the function value and its derivatives of possible
lowest order wherever necessary.

The Hermite interpolation shape functions are utilized here to derive the GDQR's
explicit weighting coe$cients. The Hermite interpolation expression is constructed as
follows [37]:
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where all the possible r include 0, 1, 2,2 , n
i
!1 at point x

i
.

Di!erentiating equation (6), one has the GDQR's equation (4) and the corresponding
explicit weighting coe$cients. Its application will be illustrated later.

The GDQR is a generalization of the DQM, since the GDQR becomes the DQM when
all n

i
equal one. The DQM deals with problems with only one condition at each discrete

point, while the GDQR handles the problems that may involve more than one condition at
any discrete point.

3. STRUCTURAL DYNAMICS PROBLEMS

3.1. THE REFERENCE PROBLEMS

A simple dynamic equation is the vibration equation of single-degree-of-freedom systems:

my(2)#2cy(1)#ky"q sin (pt), (8)
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where y(r)"dry/dtr, m is the mass, c the damping value, and k the elastic coe$cient. q and
p are the exciting force's amplitude and frequency respectively, and y(2), y(1), y the
acceleration, velocity and displacement respectively. One usually uses the following
standard form:

y(2)#2gy(1)#u2y"q sin (pt)/m, (9)

where g is the damping ratio, and u the natural frequency. In the di!erential quadrature
method, one usually employs the normalized co-ordinates [!1, 1] or [0, 1]. Here we utilize
[0, 1]. Suppose that q"t/¹, and ¹ is the time length of solution domain. Using the
normalized time co-ordinate (q, >), one obtains

>(2)#2g¹>(1)#(u¹ )2>"¹2q sin (p¹q)/m, (10)

where g6 "g¹ is the normalized damping ratio, u6 "u¹ the normalized natural frequency,
pN "p¹ the normalized exciting force's frequency, and qN "¹2q/m the normalized exciting
force's amplitude. Therefore,

>(2)#2gN >(1)#uN 2>"qN sin (pN q). (11)

This paper will discuss four kinds of vibration equations. Their normalized expressions
can be obtained in the same way as that of equation (11) and are omitted here for brevity.
All the boundary conditions are y(t"0)"y

0
and y(1)(t"0)"y(1)

0
. The "rst kind of

vibration equation and its analytic solution are
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The second kind of vibration equation and its solution are
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The third kind of vibration equation and its solution are
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The fourth kind of vibration equation and its solution are
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3.2. THE INVERSE NODE NUMBERING

In the time co-ordinate, one usually numbers the discrete time points from the beginning
accordingly. Here, the authors use the inverse node numbering as in space-rocket
launching. That is, one can use the initial time point as the Nth point and the time domain
endpoint as the "rst point. Note that in the Lagrange or Hermite interpolation process the
discrete point's numbering can be arbitrary. The suggested numbering method is very
convenient for programming and expression. The inverse node numbering equation
corresponding to equation (3) in the normalized time coordinate q, qL[0, 1], is

q
i
"

1!cos [(N!i)n/(N!1)]

2
(i"1, 2,2 ,N ). (20)

3.3. THE GDQR EXPRESSION FOR SECOND ORDER INITIAL-VALUE PROBLEMS

In structural dynamics problems, one has two initial conditions, the initial displacement
and initial velocity. If the time domain qL[0, 1] is discretized into N points according to
equation (20), the GDQR imposes that two initial conditions will correspond to two
independent variables at the initial point q

N
. Therefore, we choose the function value

(displacement,>
N
) and its "rst derivative (velocity,>(1)

N
) as two independent variables at the

initial point q
N
. All the other points only have the function values (displacements) as

independent variables since only the governing equation is to be implemented. Thus, the
number of independent variables is M"+N

i/1
n
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"N#1. Now the GDQR's Hermite

interpolation expression is according to equation (6),
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Using equations (4) and (21), the GDQR's expression can be written as
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Equation (22) is the GDQR's expression for second order initial-value problems,
including structural dynamics. Now one has N!1 di!erential quadrature analogs from the
governing equation and two known independent variables from two initial-value
conditions. Thus, the number of equations equals the number of independent variables.
Second order initial-value problems are not restricted to the study of vibrations and
resonance. Electrical engineering and other "elds also have second order initial-value
problems.

3.4. DETERMINING THE EXPLICIT WEIGHTING COEFFICIENTS

The interpolation functions in equation (21) can be obtained solely based on
interpolation theory according to their properties expressed in equation (7). The h
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( j"1, 2,2 , N!1) should have the following properties:
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At a glance, one can see that the following h
j0

(q) satis"es the above properties. Note that
l
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(q) is the Lagrange interpolation function and its derivative can be obtained from equation
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The h
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(q) satis"es the three properties below according to equation (7):
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One can verify easily that the following h
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(q) satis"es the above properties:
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The above interpolation shape functions in equations (24), (27) and (28) are of the
following form:
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If in equation (29), q is assigned a di!erent q
i
, the weighting coe$cients E (r)

ij
in equation

(22) can be explicitly obtained. Note that l (1)
j

(q
i
), l (2)

j
(q

i
) (i, j"1, 2,2 , N) have been

obtained in equation (2). Since the di!erential equation is second order, only the derivatives
of no more than the second order are needed.

3.5. APPLICATIONS

The GDQR expression of equation (22) is applied to the above-mentioned four kinds of
dynamics problems. The normalized dynamics equation (11) is used as an example to
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illustrate how to get the GDQR's analog of dynamics equation at point q
i
:

N`1
+
j/1

E (2)
ij

G
j
#2gN

N`1
+
j/1

E (1)
ij

G
j
#uN 2>

i
"qN sin (p6 q

i
) (i"1, 2,2 , N!1). (30)

The di!erential quadrature analogs of the above-mentioned four kinds of dynamics
equations (12), (14), (16) and (18) can be expressed in the same way as equation (30) and are
omitted here. No di!erential quadrature expansions at the initial point are needed since the
initial displacement and initial velocity are known as independent variables. The initial
condition's quadrature analogs in the normalized co-ordinate are
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The matrix expression of equation (30), which is similar to the expression of beam-free
vibration in references [8, 21, 22], is
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substructuring, equation (32) is rewritten as

[S
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b
]M>

b
N. (33)

Therefore, the displacement at every point is obtained from equation (33). The velocity
and acceleration can be obtained from equation (22). The convenience of inverse node
numbering is clearly seen: there is no need to rearrange the matrix in equation (32), and its
substructuring is straightforward. In the above four kinds of dynamic problems, one has the
following data with units omitted:

u"1, p"2, q"1, ¹"n/2, g"0)05, y
0
"1, y(1)

0
"2.

The GDQR results and their errors relative to the analytical results of equations (13), (15),
(17) and (19) are shown in Table 1(a)}(d). All the results in this work are obtained using
FORTRAN 77 in quadruple precision. Comparing Table 1(a) and (c) with Table 1(b) and
(d), one can see that the free vibration converges faster than the forced vibration, because the
free vibration's displacement functions are simpler. When the time interval ¹ is shorter, the
accuracy of the displacement is better than that of the acceleration. When the time interval
¹ becomes longer, their accuracy attains about the same level. It is also shown that more
sampling points are needed if there is a longer interval ¹.

4. THIRD ORDER INITIAL-VALUE PROBLEMS

For third order initial-value problems, we have the following governing equation,
initial-value conditions and its analytic solution respectively [38]:

y(3)!2y(2)!y(1)#2y"2x2!6x#4, (34)



TABLE 1(a)

¹he GDQR1s results and their errors relative to analytical results of equation (13)

Displacement Acceleration

¹ N q
i

GDQR Rel. error (%) GDQR Rel. error (%)

n/2 11 1 2)00000 !7.93E-10 !4)93480 !7)93E-10
11 3 2)12698 !7)41E-10 !5)24811 !7)41E-10
11 5 2)22909 !6)19E-10 !5)50005 !6)19E-10
11 7 1)88921 !4)45E-10 !4)66145 !4)45E-10
11 9 1)28764 !1)90E-10 !3)17713 !1)90E-10
23 1 2)00000 !1)42E-29 !4)93480 1)22E-26
23 5 2)10883 !1)41E-29 !5)20333 !2)10E-28
23 9 2)23605 !1)14E-29 !5)51722 !1)55E-28
23 13 2)02921 !8)64E-30 !5)00688 8)93E-29
23 17 1)49901 !4)73E-30 !3)69867 1)48E-28
23 21 1)06311 !9)60E-31 !2)62312 !6)90E-28
86 1 2)00000 4)50E-29 !4)93480 !1)88E-22
86 11 2)05020 3)74E-29 !5)05866 !1)44E-24
86 21 2)16168 9)30E-29 !5)33373 5)37E-26
86 31 2)23517 9)78E-29 !5)51506 3)23E-25
86 41 2)16695 3)46E-29 !5)34673 !9)01E-27
86 51 1)92170 4)02E-29 !4)74159 !6)81E-26
86 61 1)56579 3)68E-29 !3)86343 !1)32E-27
86 71 1)22782 3)36E-29 !3)02954 1)54E-25
86 81 1)02666 7)37E-30 !2)53317 6)03E-26

20n 50 1 1)00000 !2)47E-06 !3947)84 !2)47E-06
50 9 0)947169 !1)55E-04 !3739)27 !1)55E-04
50 17 !1)93005 !5)52E-05 7619)54 !5)52E-05
50 25 2)22485 !6)93E-05 !8783)34 !6)93E-05
50 33 !2)23063 !8)02E-05 8806)17 !8)02E-05
50 41 !1)49603 !1)16E-04 5906)10 !1)16E-04
50 49 1)12692 !1)52E-05 !4448)91 !1)52E-05
90 1 1)00000 4)60E-30 !3947)84 1)04E-26
90 11 !2)22546 !1)41E-29 8785)75 !5)37E-30
90 21 !1)54410 !2)56E-29 6095)87 !2)65E-29
90 31 !0)317436 4)86E-29 1253)19 2)62E-29
90 41 !1)68028 !2)36E-29 6633)47 !2)96E-29
90 51 1)41623 !3)10E-30 !5591)04 !2)44E-30
90 61 0)383136 !6)94E-29 !1512)56 !7)70E-29
90 71 1)86340 !1)00E-29 !7356)41 !1)32E-29
90 81 1)99874 !1)88E-29 !7890)69 !1)17E-29
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y(x"0)"5, y(1)(x"0)"!5, y(2)(x"0)"1, (35)

y"2e~x#ex!e2x#x2!2x#3. (36)

The numerical solution in the domain xL[0,¹] is needed. Using X"x/¹, i.e.,
XL[0, 1], the normalized co-ordinate (X, >) can be employed. The governing di!erential
equation (34) is transformed to

>(3)!2¹>(2)!¹2>(1)#2¹3>"¹3x2(X¹)2!6X¹#4y . (37)



TABLE 1(b)

¹he GDQR1s results and their errors relative to analytical results of equation (15)

Displacement Acceleration

¹ N q
i

GDQR Rel. error (%) GDQR Rel. error (%)

n/2 11 1 2)33333 !1.11E-10 !8)22467 !7)80E-11
11 3 2)49524 !4)57E-10 !8)51395 !3)31E-10
11 5 2)55676 !4)50E-10 !7)45974 !3)81E-10
11 7 2)01913 3)71E-10 !3)83081 4)83E-10
11 9 1)29879 6)38E-10 !0)84742 2)41E-09
35 1 2)33333 !1)30E-29 !8)22467 4)99E-26
35 5 2)39933 !1)07E-29 !8)37364 1)30E-26
35 9 2)53524 !1)02E-29 !8)51840 !3)08E-27
35 13 2)59052 !6)99E-30 !7)98170 1)57E-27
35 17 2)43311 !5)07E-30 !6)35982 2)28E-27
35 21 2)06333 !5)99E-30 !4)06277 !1)48E-28
35 25 1)61254 !3)73E-30 !1)97663 !1)45E-27
35 29 1)23470 !2)65E-30 !0)64708 !2)40E-27
35 33 1)02674 !2)06E-31 !6)687E-02 1)23E-25
85 1 2)33333 !2)11E-28 !8)22467 !8)02E-23
85 11 2)40078 !2)44E-28 !8)37655 !7)92E-25
85 21 2.53816 !2)22E-28 !8)51630 1)96E-27
85 31 2)58903 !1)63E-28 !7)94263 8)01E-26
85 41 2)41965 !2)06E-28 !6)25923 !2)11E-25
85 51 2)03711 !1)52E-28 !3)92434 4)54E-26
85 61 1)58158 !9)65E-29 !1)85409 4)51E-26
85 71 1)21004 !4)56E-29 !0)57268 !1)11E-24
85 81 1)01754 !2)59E-30 !4)367E-02 !4)02E-24

20n 90 1 1)00000 3)16E-23 1)934E-11 !6)45E-09
90 11 !2)09694 !4)28E-10 5342)82 !6)63E-10
90 21 !1)17428 !3)33E-09 1590)65 !9)71E-09
90 31 !0)900606 !8)23E-09 6716)31 !4)36E-09
90 41 !1)30529 !3)23E-09 1714)98 !9)70E-09
90 51 1)44042 !3)51E-09 !2122)27 !9)41E-09
90 61 1)672E-02 !4)27E-07 1097)32 2)57E-08
90 71 1)98454 !1)80E-09 !5846)19 !2)41E-09
90 81 2)33165 !3)00E-10 !13152)8 !2)10E-10

140 1 1)00000 1)25E-29 1)934E-11 !7)85E-12
140 16 !1)93816 !1)17E-29 4070)97 1)36E-28
140 31 !0)266021 !7)19E-29 1984)51 1)20E-28
140 46 !2)35084 !1)93E-30 9065)82 7)55E-30
140 61 1)79357 9)23E-31 !4390)41 !3)00E-29
140 76 0)375035 !7)91E-29 !1229)66 !2)13E-28
140 91 !1)53507 !1)56E-29 2185)69 !6)79E-29
140 106 !0)102188 2)65E-28 1858)84 2)10E-28
140 121 !0)986770 1)46E-29 7201)40 1)35E-28
140 136 1)25584 !6)44E-31 !1139)28 5)27E-27
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Identical to equation (20), the inverse node numbering is also used here:

X
i
"

1!cos [(N!i)n/(N!1)]

2
(i"1, 2,2 , N), (38)

where N is the number of sampling points.



TABLE 1(c)

¹he GDQR1s results and their errors relative to analytical results of equation (17)

Displacement Acceleration

¹ N q
i

GDQR Rel. error (%) GDQR Rel. error (%)

n/2 11 1 1)89934 !7)66E-10 !4)43610 !8)05E-10
11 3 2)03066 !7)17E-10 !4)82974 !7)44E-10
11 5 2)15990 !6)01E-10 !5)35107 !6)07E-10
11 7 1)86424 !4)34E-10 !4)87483 !4)22E-10
11 9 1)28547 !1)87E-10 !3)61582 !1)72E-10
23 1 1)89934 !1)42E-29 !4)43610 8)93E-27
23 5 2)01149 !1)41E-29 !4)77029 !2)15E-28
23 9 2)15971 !1)09E-29 !5)30603 !4)04E-28
23 13 1)99291 !6)72E-30 !5)12673 1)44E-28
23 17 1)49215 !3)78E-30 !4)07913 !1)17E-28
23 21 1)06301 !6)16E-31 !3)10670 !1)64E-28
86 1 1)89934 2)80E-28 !4)43610 !3)54E-22
86 11 1)95059 2)95E-28 !4)58649 2)08E-24
86 21 2)06795 2)38E-28 !4)94863 !4)13E-25
86 31 2)15689 2)74E-28 !5)28648 2)89E-25
86 41 2)11346 2)39E-28 !5)32759 6)07E-26
86 51 1)89442 1)87E-28 !4)93567 1)25E-26
86 61 1)55680 1)24E-28 !4)22164 !6)68E-26
86 71 1)22648 6)40E-29 !3)48174 !5)00E-26
86 81 1)02664 7)54E-30 !3)02261 !9)92E-26

20n 50 1 3)612E-02 !2)40E-06 !178)074 1)02E-06
50 9 6)014E-02 1)96E-05 !194)928 2)72E-05
50 17 !0)173603 1)10E-05 728)688 4)98E-06
50 25 0)446187 1)30E-05 !1779)45 1)98E-05
50 33 !0)980790 1)04E-05 3837)81 7)43E-06
50 41 !1)20629 1)76E-05 4227)45 1)59E-05
50 49 1)12651 2)48E-06 !5204)76 6)77E-06
90 1 3)612E-02 2)17E-31 !178)074 6)40E-27
90 11 !0)108694 !2)82E-30 426)488 2)58E-29
90 21 !0)107114 !4.90E-30 383)032 !1)18E-29
90 31 !1)617E-02 1)53E-29 149)997 1)54E-29
90 41 !0)291385 !4)99E-30 1054)55 !4)60E-30
90 51 0)385776 !1)51E-30 !1718)02 !4)71E-31
90 61 0)214909 !1)08E-29 !429)028 !2)70E-29
90 71 1)33683 !1)64E-30 !5615)29 !6)18E-30
90 81 1)89806 !3)12E-30 !7091)80 !4)55E-29
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According to the GDQR, three conditions at the initial point correspond to three
independent variables. One independent variable is needed for any other point since the
governing equation (37) is to be implemented only. Using equation (4), the GDQR's
expression for a third order initial-value di!erential equation can be written as
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TABLE 1(d)

¹he GDQR1s results and their errors relative to analytical results of equation (19)

Displacement Acceleration

¹ N q
i

GDQR Rel. error (%) GDQR Rel. error (%)

n/2 11 1 2)53688 3)52E-07 !6)16060 3)56E-07
11 3 2)56972 3)48E-07 !5)60082 3)94E-07
11 5 2)42861 3)28E-07 !3)98716 5)00E-07
11 7 1)91304 2)60E-07 !2)87576 4)39E-07
11 9 1)28658 1)15E-07 !2)89488 1)31E-07
35 1 2)53688 4)42E-30 !6)16060 !5)26E-26
35 5 2)55466 5)37E-30 !5)97543 8)36E-27
35 9 2)56869 3)33E-30 !5)37416 !5)65E-27
35 13 2)49609 7)28E-30 !4)40412 2)52E-27
35 17 2)28410 4)94E-30 !3)43440 1)37E-27
35 21 1)95061 7)92E-30 !2)89993 3)32E-27
35 25 1)56662 5)80E-30 !2)82665 7)79E-27
35 29 1)22702 !3)92E-31 !2)91127 !3)12E-27
35 33 1)02664 1)50E-31 !2)95667 1)92E-27
85 1 2)53688 !1)88E-28 !6)16060 !1)48E-22
85 11 2)55500 !2)20E-28 !5)97085 !8)93E-25
85 21 2)56829 !1)65E-28 !5)35456 !3)64E-25
85 31 2)49103 !1)37E-28 !4)36643 9)64E-26
85 41 2)27056 !1)10E-28 !3)39681 1)82E-25
85 51 1)92830 !1)22E-28 !2)88497 !5)03E-26
85 61 1)53970 !7)84E-29 !2)83121 !8)18E-26
85 71 1)20383 !3)43E-29 !2)91744 6)31E-26
85 81 1)01750 !1)85E-30 !2)95817 !4)17E-26

20n 90 1 1)269E-02 !3)82E-07 165)083 !3)95E-08
90 11 !0)343226 1)89E-07 3789)93 7)04E-08
90 21 8)123E-02 !1)13E-06 !3069)73 !1)11E-07
90 31 0)186726 2)65E-07 !2271)79 7)33E-08
90 41 !0)213789 1)14E-06 !1424)11 !5)14E-07
90 51 0)264704 3)21E-07 615)242 !1)46E-06
90 61 0)708027 6)23E-07 !5950)33 3)44E-07
90 71 1)28518 4)21E-07 !2038)81 1)51E-06
90 81 2)53637 5)51E-07 !9863)67 6)17E-07

140 1 1)269E-02 8)53E-29 165)083 !1)44E-24
140 16 !0)256641 !1)35E-30 2424)66 !3)62E-29
140 31 0)251941 3)86E-30 !4817)76 1)72E-30
140 46 !0)567158 !2)09E-30 6190)77 1)35E-30
140 61 2)771E-02 1)29E-29 2823)49 5)06E-30
140 76 0)634453 !1)02E-29 !6141)40 !7)36E-30
140 91 !1)01963 !1)08E-29 2790)27 2)64E-29
140 106 0)758753 !1)19E-29 !5829)44 1)95E-29
140 121 !5)517E-03 1)84E-27 !920)030 !3)68E-28
140 136 1)24677 !1)80E-30 !4649)45 7)08E-29
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The initial conditions of equation (35) can be expressed directly as

>
N
">(X"0)"5, >(1)

N
">(1) (X"0)"!5¹, >(2)

N
">(2) (X"0)"¹2. (40)

Next we derive the interpolation functions in equation (39) to obtain the explicit
weighting coe$cients. Their properties are inferred from equation (7) and can be veri"ed
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using the obtained interpolation functions.
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The interpolation functions in equations (42), (44), (46), and (48) are of the following form:

F(X)"(aX2#bX#c) l
j
(X) ( j"1, 2,2 , N). (49)

Following the identical way of equation (29), the weighting coe$cients E (r)
ij

in equation
(39) can be explicitly obtained from equations (42), (44), (46), (48), and (2). Since this
di!erential equation is third order, only derivatives of no more than the third order are
needed. Now the GDQR's analogs of the governing equation (37) is expressed as
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Besides N!1 equations from equation (50), the other three equations are from equation
(40). The solution procedure is identical to the one above in the dynamic problems and
omitted for simplicity. ¹"4 is used in this example. The calculated function values and
corresponding relative errors are listed in Table 2, and so are the results of the following
problem [38]:

d3y

dx3
!2

d2y

dx2
#2

dy

dx
"0, y(0)"1/2,

dy

dx
(x"0)"!1,

d2y

dx2
(x"0)"2. (51)

Its analytic solution is

y"2)5#ex (sinx!2 cosx). (52)

Conclusions similar to those of the dynamic problems can be drawn. However, their
accuracy is lowered.



TABLE 2

¹he GDQR1s results and their errors relative to analytical results of third order problems

Equation (51) Equation (34)

N x
i

GDQR Rel. error (%) GDQR Rel. error (%)

20 1 32)5554 6)19E-13 !2915)32 4)08E-08
3 40)7938 !2)96E-13 !2340)71 4)08E-08
5 52)2561 !1)37E-12 !1237)98 4)08E-08
7 47)6275 !1)99E-12 !458)233 4)07E-08
9 29)0255 !2)44E-12 !129)296 4)06E-08

11 11)8168 !2)92E-12 !29)9591 4)11E-08
13 3)16102 !3)61E-12 !4)99671 5)05E-08
15 0)600566 !4)12E-12 1)44544 !2)94E-08
17 0)332211 !7)93E-13 3)80071 !1)09E-09
19 0)473487 !6)80E-15 4)86395 !1)02E-11

40 1 32)5554 1)50E-25 !2915)32 4)39E-24
5 40)4408 8)39E-26 !2366)66 3)87E-24
9 51)9616 4)12E-26 !1291.08 3)17E-24

13 48)6543 !8)62E-26 !500)008 3)58E-24
17 31)1099 !6)67E-26 !148)679 2)98E-24
21 13)5654 !6)57E-26 !36)5199 3)75E-24
25 3)98455 !1)70E-25 !6)94769 3)65E-24
29 0)804637 !3)29E-25 0)764598 !6)14E-24
33 0)319073 !6)60E-26 3)44947 !1)81E-25
37 0)445461 !2)13E-27 4)71081 !1)47E-27

90 1 32)5554 1)91E-22 !2915)32 !6)77E-22
11 41)7327 1)46E-22 !2270)84 !6)03E-22
21 52)7952 1)01E-22 !1103)60 !5)98E-22
31 44)5173 7)75E-23 !361)563 !6)53E-22
41 23)7047 5)05E-23 !88)7235 !5)87E-22
51 7)95431 7)07E-23 !17)4377 !4)58E-22
61 1)64140 7)88E-23 !1)43619 !7)33E-22
71 0)347916 2)43E-23 2)78199 4)86E-23
81 0)410972 !1)29E-24 4)50305 4)57E-25
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5. FOURTH ORDER INITIAL-VALUE PROBLEMS

For fourth order initial-value problems, we have the following governing equation,
initial-value conditions and its analytic solution, respectively [38]:

y(4)#10y(2)#9y"2 sinhx, (53)

y (x"0)"y(2)(x"0)"0, y(1) (x"0)"4)1, y(3) (x"0)"!27)9, (54)

y"sinx#sin 3x#0)2 sinhx. (55)

The domain xL[0,¹] is also normalized as XL[0, 1], using X"x/¹ as before. Thus,
the normalized di!erential equation and initial condition equation can be written as

>(4)#10¹2>(2)#9¹4>"2¹4 sinh (X¹), (56)

>(X"0)">(2)(X"0)"0, >(1) (X"0)"4)1¹, >(3)(X"0)"!27)9¹3. (57)
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The inverse node numbering equation (38) is also employed here. Four conditions at the
initial point need four independent variables. The GDQR's equation (4) adopts the
following form for a fourth order initial-value di!erential equation:
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The GDQR's analog of governing equation (56) is expressed as
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Here, the Hermite interpolation functions are obtained using equation (7). The explicit
weighting coe$cients can thus be solved in a way similar to equation (29):

h
j0

(X)"
(X!X

N
)3

(X
j
!X

N
)3

l
j
(X) ( j"1, 2,2 ,N!1) (60)

h
N0

(X)"(a
N0

X3#b
N0

X2#c
N0

X#d
N0

) l
N
(X), (61)

where

a
N0

"l (1)
N

(X
N
) ) l (2)

N
(X

N
)![l (1)

N
(X

N
)]3!1

6
l (3)
N

(X
N
),

b
N0

"[l (1)
N

(X
N
)]2!1

2
l (2)
N

(X
N
)!3a

N0
X

N
,

c
N0

"!l (1)
N

(X
N
)!3a

N0
X2

N
!2b

N0
X

N
,

d
N0

"1!a
N0

X3
N
!b

N0
X2

N
!c

N0
X

N
,

h
N1

(X)"(a
N1

X3#b
N1

X2#c
N1

X#d
N1

) l
N
(X), (62)

with

a
N1

"[ l (1)
N

(X
N
)]2!1

2
l (2)
N

(X
N
), b

N1
"!l (1)

N
(X

N
)!3a

N1
X

N
,

c
N1

"1!3a
N1

X2
N
!2b

N1
X

N
, d

N1
"!a

N1
X3

N
!b

N1
X2

N
!c

N1
X

N
,

h
N2

(X)"1
2
[l (1)

N
(X

N
) (X

N
!X)3#(X

N
!X)2] l

N
(X), (63)

h
N3

(X)"
(X!X

N
)3

6
l
N
(X). (64)

The remaining solution procedure is identical to the above second and third order
problems and is omitted. Another problem [38] is also calculated for a direct comparison
with the GDQR's numerical results.

y(4)!5y(2)#4y"10 cos x, (65)

y(x"0)"2, y(1)(x"0)"y(2)(x"0)"y(3)(x"0)"0, (66)

y"coshx#cosx. (67)



TABLE 3

¹he GDQR1s results and their errors relative to analytical results of fourth order problems

Equation (53) Equation (65)

N x
i

GDQR Rel. error (%) GDQR Rel. error (%)

11 1 1)44382 0)571 26)6543 !9)03E-04
3 0)414669 0)346 17)7568 !6)21E-04
5 2)17979 !0)090 6)02479 !2)24E-04
7 0)304279 !6)38 2)30461 !3)09E-05
9 1)32137 !0)12 2)00177 !6)38E-07

25 1 1)43562 !1)22E-11 26)6546 !7)95E-21
5 0)550343 !1)27E-11 20)0636 !6)77E-21
9 1)55503 6)13E-14 9)07767 !2)91E-22

13 0)992568 3)01E-11 3)34605 !7)80E-22
17 1)10011 2)18E-11 2)08338 !6)34E-23
21 1)01190 7)60E-13 2)00043 2)51E-24

30 1 1)43562 !5)61E-15 26)6546 1)97E-19
5 0)743807 !2)03E-15 21)9212 1)86E-19
9 0)750593 !2)95E-15 12)5159 1)04E-19

13 2)16612 !7)06E-15 5)52657 4)52E-20
17 0)302197 2)68E-14 2)66131 1)30E-20
21 1)35575 !5)24E-15 2)04945 1)55E-21
25 1)06851 !8)58E-15 2)00056 2)52E-23
29 0)0480613 !8)80E-15 2)00000 !8)26E-28

90 1 1)43562 !4)98E-15 26)6546 !5)11E-14
11 0)936137 !2)89E-15 23)4006 !4)43E-14
21 0)410705 3)83E-15 16)0116 !3)28E-14
31 1)60994 !6)83E-15 8)87800 !1)83E-14
41 1)85446 !6)26E-15 4)44026 !8)65E-15
51 0)248733 2)66E-14 2)56799 !2)87E-15
61 1)19029 !4)86E-15 2)07067 !4)99E-16
71 1)42791 !8)36E-15 2)00293 !3)79E-17
81 0)405689 !8)78E-15 2)00001 !2)36E-19
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The GDQR's results of these 2 fourth order initial-value problems are shown in
Table 3 using ¹"4. Although similar conclusions to second and third order problems can
be drawn, their accuracy is much lower.

6. CONCLUSION

All examples cited in this work show good convergence with an increase in the sampling
points, as shown in Tables 1}3. However, the accuracy decreases after it attains a maximum.
For dynamics problems, the decrease in accuracy is not distinct, but for third and fourth
order problems, the accuracy decreases considerably. However, all examples cited in this
work converge even when as many as 380 points are employed. One of the main weaknesses
of the di!erential quadrature solution is that the accuracy cannot be raised through
increasing the number of the sampling points. This phenomenon was also pointed out in
review paper [5].
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Using the former d-technique, the errors are quite ambiguous due to an arbitrary choice
of d-points, and there is no way to distinguish between the errors caused by the method itself
and by the d values. Since the GDQR was proposed with no use of d-points, we may rest
assured that the errors are caused by the method itself.

This paper deals with the numerical solution to second order initial-value problems in
structural dynamics and third and fourth order initial-value problems. The analyses were
developed using the proposed GDQR and the Hermite interpolation polynomials. As
a conclusion to this paper, a list of remarks is summarized.

f An application of the GDQR to second to fourth order initial-value problems is
presented. The proposed procedure here can be extended for use in coupled di!erential
equation systems or problems governed by higher order di!erential equations.

f The explicit weighting coe$cients are obtained for an easy and accurate
implementation of the GDQR. For higher order initial-value problems, similar
procedures can be employed to obtain the explicit weighting coe$cients.

f For all the examples, the larger the domain is, the more sampling points should be
employed to obtain the same solution accuracy. The solution accuracy increases at "rst
with an increase in grid points, and attains a maximum with the use of a relatively low
number of sampling points and then decreases after this maximum accuracy.
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